
Heuristic Algorithms for Designing Minimum Cost

FSO Networks

Shanshan Chen, Samuel Cheng, Pramode Verma, and Robert Huck

School of Electrical and Computer Engineering

University of Oklahoma, Tulsa, OK, 74135

Email: {shanshan.chen, samuel.cheng, pverma, rchuck}@ou.edu

Abstract — This paper presents six heuristic algorithms for

designing minimum cost Free Spaces Optics (FSO) networks.

The criterion used for minimizing cost is the same as

minimizing the total number of links in the network or,

equivalently, minimizing the number of transceiver pairs.

Keywords-FSO; topology; minimum cost; minimum num-

ber of links

I. INTRODUCTION

FSO networking is emerging as a viable networking option

in several situations. Generally, the focus of the research is on

ways to create a topology that provides reliable connectivity

[1], [2]. However, the major cost of an FSO network lies in

the transmitters and receivers, and the total cost increases

as the number of links needed increases. This is because

unlike a wireless network that could support omnidirectional

antennas, FSO links are highly focused point-to-point links.

Consequently, in an FSO network, for each two nodes that

need to directly communicate, a transceiver pair is mandatory.

Therefore, the task of minimizing the cost of an FSO network

is actually to generate a topology having the fewest number

of links, or equivalently, fewest number of transceiver pairs,

required to meet the necessary communication demand.

This brings up an unaddressed problem, which is how to

minimize the number of links in the topological design for

FSO networks. While design of other networks has been

widely studied (for example, [3], [4], [5]), there is not much

research on FSO network design. In this paper, we develop

heuristic algorithms to minimize the cost of a FSO network

and analyze the capabilities of the algorithms.

FSO nodes are installed to satisfy the communication de-

mand of buildings located close together having a direct line

of sight. The traffic between any two buildings may not be

the same considering the different number of people in each

building and the characteristics of traffic demand. Therefore,

the location of sources and destinations of traffic and the

amount of traffic between any pair of nodes is a pre-requisite

for designing a cost-effective FSO network [6].

This paper is organized as follows. In Section II, we give

the rationale and an overview of our proposed algorithms. In

Section III, we present the detailed implementation. In Section

IV, we present the findings of the analysis and the results.

Section V captures our conclusions.

II. FRAMEWORK OF OUR ALGORITHMS

A conventional method to generate a topology with a mini-

mum number of links in a graph usually starts by constructing

a minimum spanning tree. However, this method would not

apply to our situation because the minimum spanning tree

might not be able to carry all the traffic specified.

To limit the internal traffic within the network, it is reason-

able to always establish a direct link among nodes that have the

maximum traffic first. This is because a direct link between

nodes with high traffic will likely minimize the number of

links needed. This will also avoid the consequence of a large

amount of traffic occupying more than the necessary number

of links and thus become a burden to the whole network. On

the contrary, a new link should not be added blindly. In order

to satisfy all the demand requests with as few links as possible,

it is desirable to utilize the established links before adding new

links to the network.

Occasionally, the traffic demand between two nodes can

only be partially satisfied by the currently established links.

In this case, we have to decide if we want to split the demand

traffic and allocate some of it to the establish links or simply

add a new link.

In a nutshell, our approach designs a FSO network by

sequentially assigning a path for the curently largest traffic

demand in which the path maximally utilizes the already

established links. To simplify the implementation, we consider

three different graphs: 1) a graph containing all possible

links; 2) a graph containing only links that have already been

established; 3) a graph containing only links that have already

been established and have sufficient remaining capacities for

the target traffic demand. Note that any path belonging to the

second graph will only utilize the already established links.

Moreover, any path belonging to the third graph will only

utilize the already established links and a newly assigned path

will be able to accomodate the entire desired traffic. Therefore,

to effectively use the already established links, one should try

to assign a path belonging to the second or third graph first.

If no such path exists, we can then resort to paths that belong

to the first graph.

For the sake of minimizing the traffic load within the

network, it is evident that the selected path should have the

least number of hops. To achieve this, we can simply apply



the Bellman-Ford algorithm to find the path with minimum

number of hops [6], [7].

III. IMPLEMENTATION OF OUR ALGORITHMS

Before we describe the detailed implementation of our

algorithms, we clarify the several assumptions we have made

for implementation as follows:

1) All the FSO nodes are visible to each other, and all the

links have enough margin of transmission.

2) The graphs we deal with are undirectional graphs, i.e.,

the demand request from Node A to Node B is equal

to those from Node B to Node A. This also means the

matrices we use in our algorithms are symmetric.

3) The link with a saturated load, i.e., the link with traffic

load equal to capacity, is considered not usable, which

eliminates it from carrying any additional traffic.

For convenience, we define the common components used

in these algorithms. Because the most intuitive way to present

graphs is by using adjacency matrices [8], [9], we adopt

matrices to generate and record the variables we use.

Demand Matrix: This matrix, Demand(i,j), records the

(residual) demand request between each pair of nodes, Node

i and Node j. The initial value of the demand matrix is the

original traffic demand specified.

Load Matrix: This matrix, Load(i,j), records the traffic

load between each two nodes, Node i and Node j, that has

been currently assigned between these nodes.

Capacity Matrix: This matrix, Capacity(i,j), records the

capacity between each two nodes, Node i and Node j.

Update Demand Matrix: This process updates the demand

between the two nodes to zero when the demand is completely

satisfied; otherwise, this process updates this demand to the

previous demand minus the satisfied demand.

Update Load Matrix: This process is run at the end of

each iteration, because the Load Matrix is changed after the

demand is loaded between one or more node pairs. It updates

the load between the node pairs by adding the traffic loaded

in the last iteration. This process is the basis for the graphs to

be updated in each iteration.

We also generate three different graphs represented by

adjacency matrices to store the links created and occupied

for each solution. G0 is the graph including all links that are

not saturated (excluding those with no remaining capacity).

G1 is the graph that includes all established links that are not

saturated. And G2 is the graph that includes all the established

links that can both satisfy the current demand request and are

not saturated.

Let V be the vertex set containing all potential FSO

nodes. We can write the three graphs more precisely as

G0 = (V0, E0), G1 = (V1, E1), and G2 = (V2, E2), where
their edge sets, E0, E1, and E2, are respectively defined as

E0 = {(i, j) |Load(i, j) < Capacity(i, j), i, j ∈ V };
E1 = {(i, j) |0 < Load(i, j) < Capacity(i, j), i, j ∈ V };
E2 = {(i, j) |0 < Load(i, j) < Capacity(i, j) − Request

demand, i, j ∈ V }.

And their corresponding vertex sets, V0, V1, V2, are defined

by Vl = {i|(i, j) ∈ El}, l = 0, 1, 2. Note that G0 ⊃ G1 ⊃ G2.

Specifically, there are two ways to select the demand request

to be satisfied in each iteration. One way to select the demand

request to be satisfied is to find the maximum requested

demand in the demand matrix and identify the two nodes

needing a path to satisfy the demand. We classify algorithms

using this node selection method into category A. The other

way to select a demand request is to identify the node with

maximum demand. This can be done by summing each row

of the demand matrix. The row with the maximum sum

represents the node with the maximum demand. We classify

algorithms using this node selection method into category B.

For each category, we can further order the path searching

steps according to three different combinations as follows.

1) G1-G0 Scheme: In this scheme, we search for the

possible paths in G1 first. Note that the links along a path

in G1 may or may not have sufficient remaining capacity to

accommodate the entire request demand. If a path is found and

has sufficient capacity for the demand, the current demand

will be assigned completely to the path. However, if a path

exists but does not have sufficient capacity, the maximum

available capacity will be subtracted from the current request

and assigned to the path. If no path can be found in G 1, the

algorithm will search graph G0, which includes all possible

links.

2) G2-G1-G0 Scheme: In this scheme, we search for the

possible paths in G2 first, which includes all the links that will

satisfy the current demand request completely. If no such paths

can be found in G2, we then search for the possible paths in

G1. If the path cannot even be found in G1, the algorithm will

search graph G0, which includes all possible links.

3) G2-G0 Scheme: In this scheme, we search for the

possible paths in G2 first, which includes all the links that

will satisfy the current demand request completely. If there is

no such path found in G2, the algorithm will search G0.

IV. SIMULATIONS AND RESULTS

Two test cases have been conducted sharing the following

common assumptions:

1) The capacity of each link is equal.

2) The demand between two nodes is symmetric.

A. Demand Matrix with Equal Demand

In this case, we restrict the demand between any two nodes

to be equal. The number of nodes is set to 10 and the demand

between each pair of nodes is set to 10 also.

Fig. 1 illustrates how the number of links needed changes

with the link capacity. Interestingly, we can see from Fig. 1

that the required number of links (thus the cost of the network)

can significantly decrease as the link capacity increases.

Moreover, it is apparent that the minimum link capacity

required to satisfy the demand is equal to 10 (i.e., the demand

between each pair of nodes). At this minimum capacity, all

six algorithms successfully found the fully connected graph

as the solution. However, not all algorithms perform equally



0 20 40 60 80 100 120
5

10

15

20

25

30

35

40

45

9

Link Capacity

N
u

m
b

e
r 

o
f 

L
in

k
s

 

 

A: G1−G0

A: G2−G1−G0

A: G2−G0

B: G1−G0

B: G2−G1−G0

B: G2−G0

Fig. 1. Number of links versus link capacity for equal demand case.

well as we increases the link capacity. For example, when

link capacity increases to 20, schemes G1-G0 and G2-G1-

G0 in both categories A and B manage to decrease the

number of links to 35. On the other hand, schemes G2-G0

in both categories can only find the fully connected network

as the their best solution. Actually, schemes G2-G0 perform

consistently poorer than the other schemes. Since schemes G2-

G0 will only assign path that can accomodate the entire current

demand request, our result suggests that to allow splitting

traffic is beneficial in this case.

Note that while the number of links decreases as the

capacity increases, after the capacity exceeds a certain level,

the number of links stops decreasing. It is expected since the

topology now becomes a minimum spanning tree with number

of links equal to just one less than the number of nodes (i.e., 9).
Since each node has traffice demand of 10 to the 9 other nodes,

the minimum link capacity that allows a minimum spanning

tree solution is 90. At this minimum link capacity, all schemes

except schemes G2-G0 of both categories manage to find a

minimum spanning tree solution.

B. Demand Matrix with Gaussian distribution

To make our testing closer to a realistic situation, we also

apply our algorithms to Gaussian distributed demand matrix.

We experiment with the following setting: number of nodes =

20, capacity = 15, mean demand = 10, variance of gaussian

distribution = 4. And the result is tabulated below.

Average
Number
of Links

Variance of
Number of
Links

Failure
Number
of Links
in Fully
connected
Topology
= 190

A: G1-G0 179.1540 21.3476 371/1000
A: G2-G1-G0 179.1840 21.0992 367/1000
A: G2-G0 163.2030 12.2140 0/1000
B: G1-G0 181.1150 19.1529 482/1000
B: G2-G1-G0 181.0960 18.9738 483/1000
B: G2-G0 162.6900 12.1480 0/1000

We then lower the variance by half to 2 and conduct our

experiment again. The result is tabulated as follows.

Average
Number
of Links

Variance of
Number of
Links

Failure
Number
of Links
in Fully
connected
Topology
= 190

A: G1-G0 181.1470 3.4709 27/1000
A: G2-G1-G0 181.1470 3.4709 27/1000
A: G2-G0 180.1790 6.2072 0/1000
B: G1-G0 183.7650 3.1009 39/1000
B: G2-G1-G0 183.7650 3.1009 39/1000
B: G2-G0 180.4910 5.9599 0/1000

From our experiment, we found that for all schemes, there

exists least capacities to guarantee that the schemes provide

successful solutions for any demand matrix, and the topology

generated is very near a fully connected topology. Moreover,

the results generated by the G1-G0 scheme are quite similar

to those generated by the G2-G1-G0 scheme. As a matter of

fact, in some situations, the output results of both schemes

were even identical.

On the other hand, the G2-G0 scheme tends to give the

best performance while dealing with deficient capacity as it

provides the least number of failures. Surprisingly, while the

schemes are shown to be worst for the equal demand case,

for Gaussian distributed demand, it provided no failure while

other algorithms failed frequently. The G2-G0 scheme also

gave the least average number of links compared with other

algorithms.

V. CONCLUSION

The paper has presented six heuristic algorithms for de-

signing a topology for minimizing the number of links in

FSO networks. The simulation results have shown that the

best strategy depends significantly on the distribution. While

schemes G2-G0 of both categories perform poorly for equal

demand case, they perform the best among all schemes when

the demand is Gaussian distributed.

REFERENCES

[1] P. C. Gurumohan and J. Hui, “Topology design for free space optical
networks,” in Computer Communications and Networks, 2003. ICCCN

2003. Proceedings. The 12th International Conference on, 2003, pp. 576–
579.

[2] Z. Hu, P. Verma, and J. Sluss, “Improved reliability of free-space optical
mesh networks through topology design,” Journal of Optical Networking,
vol. 7, no. 5, pp. 436–448, 2008.

[3] C. Charnsripinyo and D. Tipper, “Topological design of survivable wire-
less access networks,” in Design of Reliable Communication Networks,

2003.(DRCN 2003). Proceedings. Fourth International Workshop on,
2003, pp. 371–378.

[4] L. A. Cox and J. R. Sanchez, “Designing least-cost survivable wireless
backhaul networks,” Journal of Heuristics, vol. 6, no. 4, pp. 525–540,
2000.

[5] S. Singhal and G. L. Thompson, “A method for maximizing the relia-
bility coefficient of a communications network,” Annals of Operations

Research, vol. 4, no. 1, pp. 307–326, 1985.
[6] L. Ford and D. Fulkerson, “Flows in networks,” 1962.
[7] J. Y. Yen, “An algorithm for finding shortest routes from all source nodes

to a given destination in general networks,” Q. Appl. Math., vol. 27, pp.
526–530, 1970.

[8] C. D. Godsil, G. Royle, and C. D. Godsil, Algebraic graph theory.
Springer New York, 2001.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT Press, Cambridge, Ma, 2001.


